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ABSTRACT

A phase field model is derived for free boundary problems where

the effects of supercooling and surface tension are present. A scheme

for obtaining numerical approximations is derived, and sample numerical

results are presented.
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1. The H-method for Stefan Problems

The standard description of a solidification process is captured in

the classical Stefan problem [1]. In this context T « T(x,t) denotes

a temperature field with T* denoting the phase transition temperature.

In particular, points x in the material ft are in the liquid phase

when T > TA, and conversely, they are in the solid phase when T < T^.

At points ££ft where there is no phase transition, i.e., TOc,t) + T^,

the following diffusion equation is valid:

(1.1) || - div(D grad T) x £ ft, t > 0, T(x,t) + T*.

The transition region is defined by

(1.2) f(t) - {x €R : T(x,t) - T*},

and for points in this region

(1.3) Xv + [D*grad T*vJ* - 0, x £ T(t).

Here X is the latent heat, v the normal velocity of F(t), \^ the normal

to F(t), and [•]_ denotes the jump across F(t). To complete the speci-

fication of the problem v» specify initial conditions, e.g.,

(1.4) T(x,0) » TQ(x) x €ft,

for a given initial temperature field TQ, and boundary conditions. For

simplicity we use Dirichlet type conditions, namely

(1-5) T(x,t) - Tx(x), x £ 3ft, t > 0,

where T^ is a given temperature field defined on the boundary 3ft of ft.
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The H-oethod [2] is a reformulation of (1.1), (1.3) in terms of a

single partial differential equation. To do this we introduce an "enthalpy"

as follows:

Iu + X/2, u > 0

u - A/2, u < 0f

where

(1.7) o - T - T#.

Then (1.1) , (1.3) are formally equivalent to

(1.8) | | - div(D grid u) .

Since H is discontinuous across the free boundary F(t), (1.8) must be

interpreted in the weak sense. Perhaps the most easily understood "weak

version" of this equation is as a balance law which expresses the conserva-

tion of heat. Indeed, let C be any closed curve in ft x [0,°°). Then the

balance of heat in C gives

(1.9) / (Hvt + Dgr^du-Vx)dC « 0,

where V » (v.,v ) is the outer normal to the space-time curve C.

By shrinking G to a point (x,t) one can formally derive (1.7).

Alternately, letting C shrink to a point (x,t), where x. i F(t), one ob

\ T
tains (1 1). If on the other hand x £ T(t), we obtain

V[H£ + [Dgradu*vx£ - 0,

which is (1.3).
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The most common finite element and finite difference approximations

to (1.1), (1.3) can be derived directly from (1.9). For example, consider

the case where ft is an interval [a,b], and [a,b] x [0,®] is subdivided

into rectangles with nodes at (x.9tQ). Let Ax denote the spacing in x

and At denote the space in t with u^ denoting the approximation to

u(x.9tn). Then instead of requiring that (1.8) hold for all closed curves

C9 we require that it hold only for the rectangular paths shown in Figure

1.1. This along with the use of midpoint quadrature to evaluate the inte-

grals gives the following difference scheme:

„ / nrl\ -. / n\ I nIJ ^ nf J . nf j I
H(u 1 - H ( u ) u -2u +«4_i

(1.10) Xi 'A*
 U/ « D >l-iti i i ^ -

Ax

I Ac

Figure 1.1. Test Curves C.

\

The scheme (1.10) (plus boundary and initial conditions) represents a

set of nonlinear equations for the discrete temperature field {u?}. Since

H is piecewise linear in u this scheme is in fact a "piecewise linear"
system in the temperature field u. and as such is easier to solve than

a fully nonlinear diffusicn problem. This scheme and its multidimensional



analogs have proven to be quite effective in practice [3] and [10].

Interestingly, most of the schemes proposed for solving the Stefan

problem either directly reduce to (1.9) or to this scheme with minor

modifications•

2. A Generalized Stefan Problem - Supercooling and Surface Tension

In many applications — most notably in crystal growth and the fusion

and joining of material [4] — there are important effects not captured in

the classical Stefan problem. One is the effect of surface tension. As soli-

dification takes place the melting temperature T^ itself will change as

the curvature K of the free surface F(t) changes. This can be expressed

mathematically by a formula that goes back to Gibbs [5], and which takes the

following form:

(2.1) Tft - I^Cl-tlC).

Here T^ is a mean transition temperature, and £ is a capillary length.

While (2.1) introduces a full nonlinearity (into the otherwise "piece-

wise linear" system (1.1) - (1.3))f it is in fact a benign nonlinearity which

attempts to stabilize perturbations introduced in the system. For example,

if we introduce a perturbation in a planar free surface with a positive curva-

ture K>0 as in Figure 2.1, then the transition temperature is lowered, and

the perturbation tends to liquidify and disappear.

\ f T > T - T. (liquid)

T * T* > T*

T < T* * T* (solid)

• X,
1

Figure 2.1. Effect of Surface Tension
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The second effect of importance is supercooling. It is possible, for

example, for a material to be in the liquid phase with its temperature below

the transition temperature, or conversely, in the solid phase with its tem-

perature above the transition temperature. This situation can be captured

mathematically by permitting the enthalpy H * H(u) to be multivalued (as

in Figure 2.2).

H(u)

Figure 2.2. The Multivalued Enthalphy

This clearly is an unstable force In solidification. That is, supercooling

tends to amplify any perturbation introduced in the system such as shown in

Figure 2.1. Without surface tension the influence of supercooling would lead

to a totally unstable system. In real physical systems, however, where super-

cooling is present, local instabilities — often called dendrites — can

occur but they are counter balanced by the nonlinear stabilizing effects of

surface tension.



One can still use the H-method for problems where surface tension is

present (i.e., T^ is given by (2.1)), although it is far more tedious to

apply than with standard Stefan problems. The most significant problem is

the need to accurately approximate the free surface F(t) so that reasonable

approximations to that curvature K of F(t) can be obtained. This unfor-

tunately works against one of the most attractive features of the H-method

when applied to standard Stefan problems; i.e., the ability to get reasonable

temperature fields without having to sharply resolve the free boundary [6].

The effects of supercooling, on the other hand, cannot directly be intro-

duced into the H-method. Additional information is needed to resolve the

ambiguity created by a multivalued enthalpy H(u). Smith [7] has offered

one method for doing this by introducing a local criteria for determining

which branch of H(u) should be used. In particular, Smith subdivided space-

time into cells and used (1.9) to derive a finite difference approximation.

He let a spatial cell change phase only when a "majority" of its neighbors

were in the opposite phase. Smith's numerical results seem quite realistic,

and from the point of view of statistical mechanics, his local criteria

seems intuitive. However, a number of important questions can be raised.

First, his local criteria is tied to the numerical discretization. How does

one interpret his condition as the mesh spacing goes to zero? Secondly, if

there is a "limit condition" is it independent of the grids used in the

numerical approximation? In short, can one view Smith's scheme as the approxi-

mation to an appropriate continuum model?

In the next section we introduce an alternate model which possibly may

be of value in answering these questions. In addition, this model itself

can also be used for numerical approximation when supercooling and surface

tension is present.
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3. Phase Field Models

In this model ve introduce a phase variable 4 * $(x.,t) which is to

be determined by an appropriate field equation. Ideally ve should have

• • •. in the liquid region and • " •^ in the solid region. Thus the

enthalpy is given by

(3.1) H - u +

As above a balance of heat gives

(3.2) || - div[D g«id u] f x £ Qf t > 0f

and ve recall that this equation is equivalent to (1.1) and (1.3).

The phase field $, on the other hand, satisfies

(3.3) T ft " ***• + *(*-*3) + Xu'

for appropriate constants T > 0, A > 0f and £. This equation can be

derived by introducing the Helmholtz free energy, which following [8]

takes the form

One requires that 0 relax in time T > 0 to a critical point of this

functional; i.e..

Here we shall choose a different way of justifying (3.3). In particular,
\

we show that in a suitable sense it reduces to the surface tension relation

(2.1) which we rewrite as

(3.5) u - -T^IK on T(t).

To do this we view T as a small relaxation time, i.e.,
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The diffusion scale £ is also small, but not as small as T:

(3.7) « lf « 1;

i.e., the relaxation to equilibrium takes place at faster rate than the

diffusion of the phase.

To study (3.3) under the conditions (3.6) - (3.7) we use the method of

matched asymptotic expansions. To take a concrete case consider the situa-

tion illustrated in Figure 3.1 where

describes the free surface

Figure 3.1. The free surface z * £.
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The outer solution (to first order) is obtained by setting £ • T * 0.

This gives

(3.8) *0>-*3) + u - 0.

For small u this has three real solutions

(3.9) '• - •+ * 1, • * 0 f <j> - •_ z -l.

It is easy to check that only the first and third are stable orbits of

Thus away from the free surface we have

.• " •+ or • " •_

Near the free surface we obtain a boundary layer of order

To get the first order contribution we set X - 0 and obtain the following

balance

(3.10) 0 - C2A<|> + i(<|>-<|>3) + Xu.

The appropriate boundary layer variables are

(3.11) x 7 - x

(3.12) y 7 - [y-C(xtt)]/C .

This gives

c 2 3 2» 3C 924> 92C 3<b /3c \ 2 3 2
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n
Noting that u is small near the free surface y - 0, the 0(1)

balance is

(3.14)

Solution of this equation are approximately

tanh(yV) - tanh ([y-

The next balance gives the desired Gibbs-Thompson relation9 namely

2
(3.15) u. (C/x) (l^/i-|\ OT r(t).

\3y7\3x

Noting that the curvature K of F(t) is given by

2 f3x2

we conclude from (3.15) that u is proportional to curvature K of the

free surface on T(t); i.e., (3.5) holds.

It is interesting to note that this analysis predicts for positve

£ > 0 and T > 0 a boundary layer of thickness 0(£) where 4> rapidly

changes from $_ to 4>+. Thus it is important when this model is being

used to keep £ sufficiently small so that the free surface is not smeared.

In addition, the relaxation time x must also be small so that the model is

describing phenomena near a thermodynamic equilibrium.
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4. Numerical Examples

In this section we present two numerical examples. In the first

example supercooling is not present so in effect it is equivalent to a

classical Stefan problem. We use this example to illustrate the type of

approximations that can be obtained in a setting where one can be reasona-

bly confident about how the solution should behave (although no closed

form solution is known). In the second example we display a situation

where dendrites appear and then restabilize.

In each example, the diffusion equation (3.2) was integrated by an

A.D.I, using a fixed time step AT. The equation (3.3) for the phase <t>

used the time step

At - T/H.

The number M was chosen so the front velocity was the same order of

magnitude as A/At, where A is the smallest mesh length in the grid for

$• This is illustrated in Figure 4.1 for one space dimension. In addition,

the grid for $ was moved by monitoring values of the second differences

in $.

\

nAT

AX
AT
At
x
0

mesh length for temp, grid
time difference for temp
time difference for phase
nodal points in phase grid
nodal points in temp, grid

AX

-£ -£

}At

X XXXXX X

Front Position

Figure 4.1. Space-time Grid
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The calculation started by first marching the phase equation M

steps to time AT. In this calculation the value of the temperature

u was frozen at its previous value, namely at nAt - 0. Then one time

step of length AT was used to compute u at time AT. This process

was repeated moving from AT to 2AT9 etc. In some cases where there

were extreme variations in both u and $ it became necessary to ite-

rate this process; i.e., recompute the phase based on updated values of

v
The first example is shown in Figure 4.2. It is a classical solidifi-

cation problem where supercooling is not present. The interior of the

rectangular domain is initially in the liquid state at the melting tempera-

ture UL, • 0, while the boundary temperature u- is held below uL,. AS

time progresses a front moves and the interior starts to solidify. In

Figure 4.3 we show sample temperature and phase profiles for t - 0 to

t » .5. The plots represent functions of x for the fixed value y * .5.

Note that the position of the front is blurred in the temperature plot on

the right in Figure 4.3, but is quite sharp in the plot of $ an the left.

u •

• -
- . 1

- . 1 u

*

- 0
- +1.

Figure 4.2. Initial Conditions - First Example
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In the second example we have a solidification problem that is driven

by seed of solid at u « 0 in a background of supercooled liquied at

u • -1. (See Figure 4.4). As in the previous example the mean melting

temperature UL, is 0. Two cases were considered. In the first a

rather large value for the surface tension was chosen. This tended to act

as a strong stabilizing force overriding the tendency of supercooling to

promote dendritic growth. The front contours in time are plotted in X-Y

geometry in Figure 4.5. The progresssion of the front looks like one that

would arise from a standard Stefan problem, except for the bumps in the

free surface at the final time when the front neared the boundary. The

latter are numerical artifacts.
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Phase Teaperature

•.«

ao

-wfO

-> x

Figure 4.3. Temperature and phase profiles for y - J,
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u - -1.

•>- x

(0,0)

Figure 4.4. Initial conditions - second example.
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/utlffftY,

Figure 4.5. First case - large surface tension
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#1%

Figure 4.6. Second case - small surface tension.


